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Abstract
We discuss mean-field theory of glasses without quenched disorder focusing
on the justification of the replica approach to thermodynamics. We emphasize
the assumptions implicit in this method and discuss how they can be verified.
The formalism is applied to the long-range Ising model with an orthogonal
coupling matrix. We find the one-step replica-symmetry-breaking solution and
show that it is stable in the intermediate-temperature range that includes the
glass state but excludes very low temperatures. At very low temperatures this
solution becomes unstable and this approach fails.

The thermodynamics of glasses without quenched disorder is a long-standing problem in
statistical physics. The interest in this problem was renewed recently when it was understood
that powerful methods developed for the glasses with quenched disorder can often be applied
to this problem [1–6]. In both systems the local magnetization (or local density in the case of
structural glasses) in the ground state varies from site to site and different sites are typically
non-equivalent. The qualitative reason for glasses without quenched disorder being more
difficult to describe theoretically than spin glasses is the following. The mean-field theory has
to operate with the average magnetization (or its moments), not with quantities which depend
on a realization and a particular state. The average quantities appear naturally in spin glasses
after averaging over quenched disorder which makes all sites equivalent.

A few methods were suggested to overcome this difficulty for the glasses without quenched
disorder. First, a mapping of some glass models to the quenched disordered problems was
suggested [1]; this method has the obvious disadvantage that such a mapping is difficult to
guess. Second, it was noted that a typical dynamics in a glassy system leads not to a ground
state but to one of many metastable states, providing an effective averaging mechanism [7]
which makes all sites equivalent even for glasses without quenched disorder. This method has
the disadvantage that dynamical equations are much more difficult to solve than statical ones.
Very recently the cloning method was proposed that is based on the idea that even at low T

a system of m clones might be distributed in its phase space over many low-lying metastable
states if m is chosen correctly and the properties of all these states are essentially equivalent
to those of the ground state [3–6]. Generally, the partition sum of m weakly coupled clones
is

∑
F e−N(mβF−Sconf (F )), where the sum is over free energies (per site) of metastable states,
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F , and Sconf (F ) is their configurational entropy (Sconf = (1/N) ln(Nstates)). Assuming that
dSconf (F )/dF is finite at the lowest F associated with the ground state, one needs to chose
m ∝ T at low T in order to avoid a complete dominance by a single (ground) state and the
problems with site non-equivalence mentioned above. Distributing the system in the phase
space provides the effective averaging mechanism in this approach. The main assumptions
implicit in this approach are that low-lying metastable states are not correlated (otherwise,
averaging over them would not remove completely the non-equivalence of different sites) and
that configurational entropy associated with these states behaves well as a function of energy
at low energies permitting the ‘right’ choice of m.

The goal of this letter is to provide a theoretical framework alternative to the cloning
method which, albeit somewhat similar in formalism, uses different physical arguments for its
justification and allows one to check the main assumption of the method mentioned above. The
main idea of the approach is that in a system with many low-lying states, even a small random
field is able to change the energy balance between the states and pull down a different state
making it a new ground state of the system. Averaging over this random field is equivalent to
the averaging over low-lying metastable states. Specifically, in a spin system we add to the
physical Hamiltonian a magnetic field part: H → H+

∑
i hiSi with small randomhi , negligible

in the thermodynamic limit. The resulting change in the energy of a typical metastable state
is of the order of

√
Nh; because this energy interval contains a large amount of metastable

states, we expect that a small non-zero field would result in a large rearrangement of their
energies but would not change the properties of individual states. Averaging over the random
field configurations is performed in the usual way introducing n replicas of the system and
taking the limit n → 0. The assumption of uncorrelated states is equivalent to one-step replica-
symmetry-breaking (1RSB) formalism; in this case only replicas belonging to the same block
are correlated and the replica method becomes equivalent to the cloned liquid approach with
the number of clones being equivalent to the size of the 1RSB block [6]. From the above
discussion it is evident that another assumption implicit in this approach is that the energy
spacing between low-lying states should be much less than O(

√
N); if it is too big, a small

magnetic field will not be sufficient to rearrange low-lying states, while if it is too small,
e.g. dSconf /dF |F0 = ∞, the effect of the random field will be too large and no sensible limit
hi → 0 is possible. The latter situation seems to happen in the periodic long-range Josephson
array with flux 2π per strip [2] when all states are exactly degenerate and Sconf (F ) is very
singular at T = 0.

We apply our method to the Ising version of the periodic long-range Josephson array
model which is a simple example of a glass without quenched disorder and we show that in
this model the main assumptions of the method are correct in the intermediate-temperature
range but become wrong at very low temperatures. That is, we show that the 1RSB solution
that we find is stable in the intermediate range of temperatures, but becomes unstable at very
low temperatures.

The generic physical properties of the 1RSB solution are best illustrated by the p-spin
model which was extensively studied by various methods and for which the 1RSB ansatz
gives an exact solution at all temperatures. In this model one identifies two distinct transition
temperatures—the dynamical one, Tg , at which the metastable states first appear, and the
static one, Tc, corresponding to an equilibrium thermodynamic phase transition [8–10]. The
configuration entropy associated with metastable states of a particular energy is a mono-
tonically increasing function of the energy (at fixed temperature) [11], so the states with largest
possible energy dominate the full configurational entropy. Furthermore, a typical volume of
the attraction basins of each state is only a weak function of the energy, so a typical dynamical
process starting with random initial conditions ends up in one of the most abundant states, i.e. a
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state with the highest energy. Low-lying metastable states can be reached only by very special
dynamical processes that start with special initial conditions, such as constraint on initial
energy [12]. In contrast to the dynamics, the thermodynamics involves averaging with Gibbs
weight and, thus, probes mostly the lowest-lying metastable states; the configurational entropy
of these states is negligible. Generally, one expects replica theory to imply thermodynamical
averaging and to probe only the lowest energy states. Few approaches have been invented to
probe states with higher energies within the replica formalism. The situation is simplest in
the case of the 1RSB ansatz; here one replaces the condition that the free energy is minimal
as a function of the ansatz parameter, m, by the condition that resulting states are marginally
stable. We use this procedure in our approach to determine both the thermodynamic transition
temperature (as the clone method does) and the dynamical one.

We now provide the details of our formalism and its application to the simplest mean-field
model of a glass without disorder. Our model consists of two sets of Ising spins (which we
shall refer to as ‘upper’ and ‘lower’ in the following) interacting via

H = −1

2

∑
m,n

SimJ
ij
mnSjn. (1)

Here the spin Sim has a site index (m = 1, . . . , N) and a component index i = 1, 2 cor-
responding to the upper and lower spins, and matrix Ĵ is

Ĵmn =
(

0 Jmn

Jmn 0

)
(2)

with

Jmn = (J0

√
2/N) cos

(
2πα

N
(m − 1/2)(n − 1/2)

)
.

For α = 1/2 we obtain the orthogonal limit∑
n

JmnJnk = J 2
0 δmk.

In what follows we shall focus on this case. This Ising spin model is similar to the XY spin
model of the long-ranged Josephson array [2] and to the Bernasconi model [13]. Like in these
models, its lowest states correspond to ‘pseudorandom’ sequences with flat Fourier transform.
So, we expect this model to also display glassy properties—in particular, that it has extensive
configurational entropy at low temperatures. Further, one expects that in a model with long-
range interaction the barriers separating metastable states become infinite in the thermodynamic
limit. We have verified numerically that the configurational entropy in this model is indeed
extensive and its dependence on energy is similar to the one obtained for other infinite-range
glasses (see figure 1). Note, however, the important difference between this model and the XY

spin model of [2]: in the orthogonal limit the ground state of the Ising model does not become
extensively degenerate (see figure 1), whereas in the XY spin model the ground state becomes
extensively degenerate in the unitary limit making it very complicated [2].

Taking the Gaussian distribution for the random magnetic field 〈hihj 〉 = 2h2
0δi,j we get

the replica Hamiltonian

Hs =
∑
α

H(Sα) + h2
0

∑
α,β,i

Sα
imS

β

im (3)

where the replica indices α, β run from 1 to n and the limit n → 0 should be taken. The glass
transition corresponds to the appearance of a non-replica-symmetric solution of the saddle-
point equations associated with Hamiltonian (3) in the limit h0 → 0.
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Figure 1. Main panel: configurational entropy Sconf = ln(N )/N at T = 0 as a function of state
energy obtained from direct numerical simulations on systems up to N = 27 size. Inset: the total
Sconf and the degeneracy, Ng , of the lowest energy state at T = 0 as a function of system size.

In the large-N limit a long-range model containing N sites can be reduced to an effective
single-site model with a free-energy density F :

−βF = 1

2
Tr γ (B) +

1

2

∑
j

Sα
j BαβS

β

j (4)

where Sα
j is an Ising spin field retaining only replica and component index dependence, B is

an order parameter matrix in the replica space. The function γ (B) can be determined from the
condition that all single-site correlation functions of the model (4) coincide with the correlation
functions of the original model (3). Instead of comparing the spin correlation functions of these
two models it is easier to decouple Ising spins using the auxiliary field ψ , sum over Ising spins
and compare the correlation functions of the conjugate field ψ in the two new models:

βHψ = T

2

∑
m,n,α

ψα
im(Ĵ

−1)ijmnψ
α
jn −

∑
m,α,j

V (ψα
jm) (5)

βFψ = −1

2

[
Tr γ (B) −

∑
α,β,j

ψα
j B

−1
αβ ψ

β

j

]
−

∑
α,j

V (ψα
j ) (6)

where V (ψ) = ln 2 cosh(ψ). For both models one can construct a formal perturbation theory
in the interaction ln 2 cosh(ψ(j)

α ) and verify that these expansions coincide. We begin with the
model (5). Inspecting the terms of the perturbation theory for the correlator

G
αβ

im,jn = 〈ψα
imψ

β

jn〉
one verifies that in the leading order in 1/N it is given by Ĝ = [T Ĵ−1 − %]−1 with the self-
energy % which is diagonal in the site index: % = Aδmnδi,j . This approach is similar to a
locator expansion [14] but in our case the locator A might be non-trivial in the replica space.
Using the orthogonality of Ĵ we obtain that the single-site correlation function Gαβ ≡ G

αβ

im,im

(which we need to establish the correspondence between the models) becomes

G = [−A + (j 2
0 A)−1]−1 (7)

where j0 = βJ .
Now we turn to the model (6). Here the self-energy is diagonal in the site index by

construction; further, the interaction part of this model is the same as for model (5); assuming
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that their single-site correlation functions coincide, we conclude that their single-site self-
energies are equal as well. Thus, the spin correlator obtained for this model is G = [B−1−A]−1;
comparing this expression with (7), we conclude that B = j 2

0 A .
The correlator of the dual fieldψ can be related to the correlator of original spins: consider

a Gaussian transformation leading to the model (6):

exp(SBS/2) =
∫

dψ exp(−ψB−1ψ/2 + Sψ)

and use it to express G via the correlator Dαβ ≡ 〈SαSβ〉; we get: G =B + BDB. Solving this
equation for the spin correlator D and using (7) and the relation B = j 2

0 A we obtain

D = B[j 2
0 − B2]−1. (8)

Finally, the saddle-point condition for the free energy (4) is 2D = −γ ′(B); therefore
integrating equation (8) we find

γ (B) = ln(1 − j−2
0 B2). (9)

Note that the free energy (4) coincides with the free energy of the model considered in ref-
erence [1] although their properties at finite N are markedly different. Furthermore, this free
energy is the same as that obtained by the fiduciary Hamiltonian approach [1].

Paramagnetic state. In this state we take the replica-symmetric ansatz Bα,β = µδα,β and
the free energy (4) becomes

F/T = [ln j 2
0 − ln(j 2

0 − µ2)]/2 − µ − 2 ln 2. (10)

Variation with respect to µ gives

µ = [±
√

1 + 4j 2
0 − 1]/2.

Here we take the upper sign because another solution leads to an unphysical positive answer
for the energy. Usual thermodynamic relations between energy and entropy give E = −T µ,
S = ln[4

√
µ/j0].

One can see that the entropy of the normal solution becomes negative at T < TS=0 =
J0/(4

√
15) ≈ 0.064 550 J0. The fact that the entropy of a supercooled liquid (normalized to a

corresponding crystal state) interpolated to low temperatures becomes negative at some non-
zero temperature was first observed by Kauzmann [15]. Thus one expects the thermodynamic
glass transition to take place at some temperature, Tc, above TS=0.

Glass state. At the thermodynamic glass transition temperature Tc the replica symmetry
is broken; we assume that it is described by 1RSB and then verify that it is indeed a stable
solution below Tc. The 1RSB ansatz is Bα,β = µδα,β + ηRα,β , where the matrix R is a block-
diagonal matrix consisting of m×m blocks with all elements equal to 1; we get the free-energy
functional

βF = [log j 2
0 − (1 − 1/m) ln(j 2

0 − µ2)]/2 − 2 ln 2 − (lnX)/2m − µ − 2f (η,m)/m (11)

where X = j 2
0 − (µ + ηm)2 and the function f is

f (η,m) = ln

[∫
Pm(z) dz

]
Pm(z) = e−z2/2

√
2π

coshm(z
√
η). (12)

Taking the derivatives of F with respect to µ, η,m, we get(
1

m
− 1

)
µ

j 2
0 − µ2

− ηm + µ

Xm
+ 1 = 0 (13)

−(ηm + µ)/X + q(m − 1) + 1 = 0 (14)

1

2m2
log

[
(j 2

0 − µ2)/X
]

+
2

m

∂

∂m
f (η,m) − η(µ + ηm)/mX − 2f (η,m)/m2 = 0 (15)
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where

q =
∫

tanh2(z)Pm(z) dz

/ ∫
Pm(z) dz

is the spin overlap of different replicas belonging to the same blockDα,β = (1−q)δα,β +qRα,β ,
which coincides with the Edwards–Anderson (EA) order parameter. Equations (13), (14) can
be solved with respect to m, η giving

µ = η
1 + (1 − q + qm)ηm

q/(1 − q) − 2η(1 − q + qm)
(16)

and j 2
0 = µ2 +µ/(1 − q). For a given m we can solve equation (15) numerically with respect

to η and get all quantities as functions of m. The resulting dependence of m(T ) for J0 = 1 is
shown in figure 2. In the limit n → 0, the values of m should lie within the interval (0, 1) and
m = 1 defines the thermodynamic critical temperature Tc ≈ 0.064 593; it is larger than TS=0

as expected. The value of the EA order parameter q at the thermodynamic glass transition is
very close to 1, 1−q = 0.000 171 16, so in this sense the phase transition is strongly first order
but (similarly to in the p-spin model) the energy and entropy do not change discontinuously
at the transition. The numerical solution shows that when the temperature decreases, the
entropy of the glass state monotonically decreases and eventually becomes negative below
T ′ ≈ 2.8 × 10−4. The explanation of such unphysical behaviour is that the 1RSB ansatz, in
fact, becomes unstable in this low-temperature regime.
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Figure 2. Main plot: the dependence of the configuration entropy on the temperature for the
marginally stable solution. Inset: the size of the 1RSB block, m, for thermodynamic (solid
line) and marginally stable (dashed line) solutions. The value of T at which m = 1 gives the
thermodynamical (dynamical) critical temperature.

Stability of the thermodynamical solution. In order to analyse the stability of the 1RSB
ansatz we expand equation (4) to second order in the fluctuation of the order parameter δB
and consider different families of fluctuation matrices δB. This calculation is very similar
to the analysis of the stability of the paramagnetic solution and the Parisi solution in the SK
model [16, 17], so we only sketch it here1. We find that the most dangerous direction in the
fluctuation space corresponds to the ‘replicon’ modes [16, 17] which are fluctuations within
diagonal blocks of δB satisfying the conditions (δB R)α,β = 0, δBα,α = 0. The eigenvalue
corresponding to these modes is

0 = 2(1 − q)/µ + 2(1 − q)2 − 2(r − q2)

1 The details of this analysis will be presented elsewhere.
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where

r =
∫

tanh4(z)Pm(z) dz

/ ∫
Pm(z) dz.

Numerical solution shows that 0 is positive at temperatures T > Tuns ≈ 6.1 × 10−3 but
changes sign at Tuns ; thus the 1RSB solution is unstable at T < Tuns .

Marginal solution. One expects that in a glass a typical dynamical process will lead to a
most abundant state which is, therefore, marginally stable. We note that, although plausible,
this assumption might be violated if the attraction basins of the low-lying states are much
larger than those of the marginally stable ones [18]. Assuming that it is not the case, a
dynamical freezing leads to the states with 0 = 0 instead of the states with the minimal free
energy characterized by ∂F/∂m = 0. Thus, to get the properties of the states selected in a
‘dynamical’ process, we replace equation (15) by 0 = 0. The resulting dependence of the
temperature on the size of the 1RSB block m is shown in figure 2. The value m = 1 defines the
‘dynamical’ critical temperature Tg ≈ 0.133 63. The free-energy functional (4) corresponding
to the 1RSB ansatz is equivalent to the free-energy functional that is obtained in the cloned
liquid approach with m being equal to the number of clones [6]. The stability of the 1RSB
solution indicates that the main assumptions of this approach are correct in some temperature
range below Tg and, therefore, in this temperature range the configurational entropy is given
by Sconf = m2 ∂F/∂m. The dependence of Sconf corresponding to the marginal solution on
temperature is shown in figure 2. Decreasing the temperature, it first increases, goes through
the maximum at Tm, and eventually becomes negative at the temperature Tuns , at which the
thermodynamical solution becomes unstable. It is not clear however that the 1RSB solution is
a correct solution over the whole temperature range Tuns < T < Tg; on the contrary, it is quite
likely that another solution is preferred by the system below some T ′

c < Tg . We have only
indirect arguments for this: first, it seems unphysical that Sconf decreases with temperature
decrease: in the SK model the total configuration entropy of metastable states increases with
temperature decrease (corresponding to the appearance of new states at lower T ), while in the
p-spin model the configuration entropy does not depend on temperature at all; second, the
Sconf obtained does not match the results of the numerical simulations if one believes that this
solution remains correct at T < Tm. Finally, note the analogy with higher temperatures: the
paramagnetic solution is always stable but is eventually replaced by the 1RSB solution.

In conclusion, we have justified the application of the replica method to some systems
without quenched disorder and discussed situations in which it fails. We identify two dangers:
correlations between metastable states close to the ground state and too-large degeneracy of
the ground state. We apply the formalism to the periodic Ising spin model with an orthogonal
coupling matrix and find that it gives the same free energy as the fiduciary Hamiltonian
approach [1]. Further, we show that it works in the intermediate-temperature range but fails
at low temperatures when metastable states become correlated. Two questions remain open:
whether the generalization of this method to continuous symmetry breaking would allow one
to study the models with correlated metastable states and what to do if the ground state of the
model is highly degenerate as it is, e.g., in the case of a unitary coupling matrix.
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